ar X iv : m at h / 05 02 35 7 v 1 [ m at h . N A ] 1 6 Fe b 20 05 A Sublinear Algorithm of Sparse Fourier Transform for Nonequispaced Data ∗

نویسنده

  • Jing Zou
چکیده

We present a sublinear randomized algorithm to compute a sparse Fourier transform for nonequispaced data. Suppose a signal S is known to consist of N equispaced samples, of which only L < N are available. If the ratio p = L/N is not close to 1, the available data are typically non-equispaced samples. Then our algorithm reconstructs a near-optimal B-term representation R with high probability 1−δ, in time and space poly(B, log(L), log p, log(1/δ), ǫ−1), such that ‖S − R‖2 ≤ (1 + ǫ)‖S − RB opt‖, where RB opt is the optimal B-term Fourier representation of signal S. The sublinear poly(logL) time is compared to the superlinear O(N logN + L) time requirement of the present best known Inverse Nonequispaced Fast Fourier Transform (INFFT) algorithms. Numerical experiments support the advantage in speed of our algorithm over other methods for sparse signals: it already outperforms INFFT for large but realistic size N and works well even in the situation of a large percentage of missing data and in the presence of noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 07 02 43 6 v 1 [ m at h . N T ] 1 5 Fe b 20 07 Calculation of l - adic Local Fourier Transformations ∗

We calculate the local Fourier transformations for a class of Q l -sheaves. In particular, we verify a conjecture of Laumon and Malgrange ([L] 2.6.3).

متن کامل

ar X iv : m at h / 05 02 50 5 v 1 [ m at h . A P ] 2 4 Fe b 20 05 Some Remarks on Strichartz Estimates for Homogeneous Wave Equation ∗

We give several remarks on Strichartz estimates for homogeneous wave equation with special attention to the cases of Lx estimates, radial solutions and initial data from the inhomogeneous Sobolev spaces. In particular, we give the failure of the endpoint estimate L 4 n−1 t Lx for n = 2, 3 even for data in inhomogeneous Sobolev spaces.

متن کامل

ar X iv : m at h / 05 06 07 2 v 2 [ m at h . G R ] 1 6 Fe b 20 07 Centraliser Dimension of Partially Commutative Groups ∗ † Andrew

In paper [7] we investigated the centraliser dimension of groups. In the current paper we study properties of centraliser dimension for the class of free partially commutative groups and, as a corollary, we obtain an efficient algorithm for computation of centraliser dimension in these groups.

متن کامل

ar X iv : m at h / 05 02 05 3 v 2 [ m at h . G N ] 2 3 Fe b 20 05 SOME RESULTS IN GENERALIZED ŠERSTNEV SPACES

In this paper, we show that D-compactness in GeneralizedŠerstnev spaces implies D-boundedness and as in the classical case, a D-bounded and closed subset of a characteristic GeneralizedŠerstnev is not D-compact in general. Finally, in the finite dimensional GeneralizedŠerstnev spaces a subset is D-compact if and only if is D-bounded and closed.

متن کامل

ar X iv : m at h / 05 02 05 3 v 3 [ m at h . G N ] 2 5 Fe b 20 05 SOME RESULTS IN GENERALIZED ŠERSTNEV SPACES

In this paper, we show that D-compactness in GeneralizedŠerstnev spaces implies D-boundedness and as in the classical case, a D-bounded and closed subset of a characteristic GeneralizedŠerstnev is not D-compact in general. Finally, in the finite dimensional GeneralizedŠerstnev spaces a subset is D-compact if and only if it is D-bounded and closed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005